NEWS

THE MIDGES THAT PULL 10G

Predicting the dispersal of airborne pests to protect crops demands an understanding of complex swarm dynamics that a simple mathematical model looks ready to tackle.

  • 03
  • JAN
  • 2018

Midges move with ferocious randomness, frequently subjecting themselves to accelerations of more than 10g, well beyond the limit of fighter pilots, as they duck and dive in swarms that still retain an almost paradoxical cohesiveness despite blustery wind or powerful updrafts.

Collectively, midges move very differently from flocks of birds, shoals of fish or animal herds; there is no order to their flight, no orchestrated swoops or changes of direction. The movement of midges is completely haphazard, and can be astonishingly testing.

“Fortunately for midges, insect brains do not move around in the skull,” notes Andy Reynolds, a physicist at Rothamsted Research who studies insect flight for the institute’s Smart Crop Protection programme. His latest findings are published today in the Royal Society journal, Interface.

The aim is to predict, to “postcode-level” accuracy, where airborne pests, such as aphids, will turn up next. Aside from the complex flight dynamics, there is the problem that such behaviour has not been observed directly, through experimentation, so that prospective models could be honed.

“Instead, we have measurements of aerial density profiles and velocity statistics,” says Reynolds. He used this “simple” data, in an associated paper published last year, to formulate a theory on flight behaviour that collaborators from Stanford University were able to verify experimentally.

“We showed that you really can deduce insect flight behaviours from the simplest of observations,” says Reynolds. His latest research pushes the theory much further. He has devised a simple model that predicts the strange properties of midge swarms observed earlier.

Non-biting midges. Pixabay-Collective Commons

“Midges frequently pull 10g or more; displace a swarm (with a gust of wind) and it behaves as a solid despite all that empty space; the swarm consists of a dense inner core and outer vapour phase with strange thermodynamic properties,” notes Reynolds.

“The theory may also explain why laboratory swarms and natural swarms behave differently – because of the impact of weather conditions,” he adds. “It seems remarkable that all this complexity can be deduced from the most basic of ingredients.”

The basis for his mathematical models is some “old school physics” in the form of the Langevin equation, which dates from 1908 and describes Brownian motion, the random movement of particles suspended in a fluid.

“Like other well established equations, there have been profound changes in our understanding of the contexts in which it is valid, and the reasons for its validity,” says Reynolds. “The midges are the latest example of such a shift in our understanding.”

He adds: “The equation shows that midge swarms are effectively bound together by gravitational-like forces and so are behaving a lot like clusters of stars.”

Reynolds is confident that mathematical models can capture airborne insect behaviour and forecast how pests will disperse. “Predicting the behaviours of single aphids is a whole lot easier than predicting the behaviour of a swarm; if we can do the latter so well, we can do the former despite the lack of data,” he says.

About Rothamsted Research
Rothamsted Research is the longest-running agricultural research institute in the world. We work from gene to field with a proud history of ground-breaking discoveries, from crop treatment to crop protection, from statistical interpretation to soils management. Our founders, in 1843, were the pioneers of modern agriculture, and we are known for our imaginative science and our collaborative influence on fresh thinking and farming practices.
Through independent science and innovation, we make significant contributions to improving agri-food systems in the UK and internationally. In terms of the institute’s economic contribution, the cumulative impact of our work in the UK was calculated to exceed £3000 million a year in 20151. Our strength lies in our systems approach, which combines science and strategic research, interdisciplinary teams and partnerships.
Rothamsted is also home to three unique resources. These National Capabilities are open to researchers from all over the world: The Long-Term Experiments, Rothamsted Insect Survey and the North Wyke Farm Platform.
We are strategically funded by the Biotechnology and Biological Sciences Research Council (BBSRC), with additional support from other national and international funding streams, and from industry. We are also supported by the Lawes Agricultural Trust (LAT).
For more information, visit https://www.rothamsted.ac.uk/; Twitter @Rothamsted
1Rothamsted Research and the Value of Excellence: A synthesis of the available evidence, by Séan Rickard (Oct 2015)

About BBSRC
The Biotechnology and Biological Sciences Research Council is part of UK Research and Innovation, a non-departmental public body funded by a grant-in-aid from the UK government.
BBSRC invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond.
Funded by government, BBSRC invested £469 million in world-class bioscience in 2016-17. We support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals.
More information about BBSRC, our science and our impact.
More information about BBSRC strategically funded institutes

About LAT
The Lawes Agricultural Trust, established in 1889 by Sir John Bennet Lawes, supports Rothamsted Research’s national and international agricultural science through the provision of land, facilities and funding. LAT, a charitable trust, owns the estates at Harpenden and Broom's Barn, including many of the buildings used by Rothamsted Research. LAT provides an annual research grant to the Director, accommodation for nearly 200 people, and support for fellowships for young scientists from developing countries. LAT also makes capital grants to help modernise facilities at Rothamsted, or invests in new buildings.